An Improved Separation of Regular Resolution from Pool Resolution and Clause Learning

نویسندگان

  • Maria Luisa Bonet
  • Samuel R. Buss
چکیده

We prove that the graph tautology principles of Alekhnovich, Johannsen, Pitassi and Urquhart have polynomial size pool resolution refutations that use only input lemmas as learned clauses and without degenerate resolution inferences. These graph tautology principles can be refuted by polynomial size DPLL proofs with clause learning, even when restricted to greedy, unit-propagating DPLL search.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Separation of Regular Resolution from Pool Resolution and Clause Learning (Extended Abstract)

We establish the unexpected power of conflict driven clause learning (CDCL) proof search by proving that the sets of unsatisfiable clauses obtained from the guarded graph tautology principles of Alekhnovich, Johannsen, Pitassi and Urquhart have polynomial size pool resolution refutations that use only input lemmas as learned clauses. We further show that, under the correct heuristic choices, th...

متن کامل

Pool Resolution and Its Relation to Regular Resolution and DPLL with Clause Learning

Pool Resolution for propositional CNF formulas is introduced. Its relationship to state-of-the-art satis ability solvers is explained. Every regular-resolution derivation is also a pool-resolution derivation. It is shown that a certain family of formulas, called NT (n) has polynomial sized pool-resolution refutations, whereas the shortest regular refutations have an exponential lower bound. Thi...

متن کامل

Improved Separations of Regular Resolution from Clause Learning Proof Systems

This paper studies the relationship between resolution and conflict driven clause learning (CDCL) without restarts, and refutes some conjectured possible separations. We prove that the guarded, xor-ified pebbling tautology clauses, which Urquhart proved are hard for regular resolution, as well as the guarded graph tautology clauses of Alekhnovich, Johannsen, Pitassi, and Urquhart have polynomia...

متن کامل

Pool resolution is NP-hard to recognize

A pool resolution proof is a dag-like resolution proof which admits a depth-first traversal tree in which no variable is used as a resolution variable twice on any branch. The problem of determining whether a given dag-like resolution proof is a valid pool resolution proof is shown to be NP-complete. Propositional resolution has been the foundational method for reasoning in propositional logic,...

متن کامل

Small Stone in Pool

The Stone tautologies are known to have polynomial size resolution refutations and require exponential size regular refutations. We prove that the Stone tautologies also have polynomial size proofs in both pool resolution and the proof system of regular tree-like resolution with input lemmas (regRTI). Therefore, the Stone tautologies do not separate resolution from DPLL with clause learning.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012